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The classical theorists resemble Euclidean geometers in a non-Euclid-
ian world who, discovering that in experience straight lines appar-
ently parallel often meet, rebuke the lines for not keeping straight – as 
the only remedy for the unfortunate collisions which are occurring. 
Yet, in truth, there is no remedy except to throw over the axiom of 
parallels and to work out a non-Euclidian geometry.

John Maynard Keynes, The General Theory (1936)

HOW TO BLOW UP YOUR HEDGE FUND
The partners of Long-Term Capital Management included Nobel 
Prize winners and PhDs in finance, economics, maths and phys-
ics. Having poached Wall Street’s savviest traders and combined 
them with what no less a figure than William Sharpe declared to 
be “probably the best academic finance department in the world” 
(Siconolfi and Raghavan 1998), LTCM set about deploying the most 
sophisticated financial models ever devised. Key among these 
models was value-at-risk (VaR).
	 The VaR methodology was integral to LTCM’s investment strate-
gy. LTCM viewed portfolio construction as an optimisation problem 
centred on maximising returns while minimising variance (which 
in VaR terms is the same thing as minimising “risk”). The end goal 
of LTCM’s process was to produce superior “risk-adjusted” returns 
over the long term – high returns with low variance.
	 From LTCM’s inception in 1994 through 1997, the strategy 
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worked, generating a compound annual return over the four-year 
period of nearly 30%/year, with a variance lower than that of the 
broad US stock market. The fund appeared to be a wildly success-
ful marriage of theory and practice. The period of 1994 to 1997 only 
served to confirm the partners’ faith in their models.
	 Despite the complexity and diversity of LTCM’s portfolio, the 
partners believed they had distilled their risk profile down to a few 
simple numbers that could be succinctly captured in a VaR analysis. 
In a fit of hubris, LTCM disclosed these VaR analyses to their inves-
tors, indicating a daily standard deviation of US$45 million and a 
monthly standard deviation of US$206 million, against total capital 
of US$5 billion (Jorion 2000). These figures were followed by the 
declaration of a 99% confidence level that the fund’s losses would 
not exceed US$105 million on a daily basis, or US$480 million on a 
monthly basis.
	 However, in the summer of 1998, LTCM’s “confidence levels” be-
gan to break down, at first slowly and then rapidly. In May, the fund 
lost US$310 million. In June it lost US$450 million, already nearing 
LTCM’s partners’ 99% confidence level of what losses could not ex-
ceed. Still, through June these losses could be understood within 
the well-defined limits of the model. After four very strong years, it 
stood to reason that LTCM would experience losses sometime, but 
that the fund would quickly return to profitability.
	 Such expectations proved unfounded. Losses for the month of 
August exceeded US$1,700 million, an 8.3-sigma event according 
to LTCM’s models. Assuming a normal (Gaussian) distribution, as 
LTCM did, an 8.3-sigma event should occur approximately once 
every 80 trillion years. It began to dawn on the partners that some-
thing might have gone wrong in their risk modelling.
	 The losses didn’t come in the form of a gradual bleed. On Au-
gust 21, 1998, the portfolio lost US$550 million – in a single day. Ac-
cording to LTCM’s VaR model, August 21 represented a 12.2-sigma 
event. The difference between an 8-sigma event and a 12-sigma 
event is such that the 8-sigma event, which should occur only once 
every tens of trillion years, should itself occur billions of times be-
fore even a single 12-sigma event occurs. Assuming a normal distri-
bution, a 12.2-sigma event should be rare enough that it essentially 
breaks the model.
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	 It can be tempting to just ignore this sort of event, except that 
just one month later LTCM lost another US$550 million in a single 
day, on September 21. The reality began to sink in that the precise 
maths that went into and came out of the VaR model – the histori-
cal sampling, the covariance calculations, the 99% confidence levels 
– had proved deeply misleading about the real nature of the risks 
LTCM was taking. By the end of September, LTCM had lost 92% of 
its partners’ capital, more than US$4 billion dollars, and almost cer-
tainly would have lost it all had the Federal Reserve not intervened 
to force an orderly liquidation (Figure 2.1).

Source:  Data taken from Bloomberg, Lowenstein, 2001; authors own composition

Figure 2.1  LTCM versus benchmarks
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Subsequent events have proved that 1998 was not a one-off “per-
fect storm” that we can expect never to see again. The market ac-
tion that bankrupted LTCM in 1998 – ballooning credit spreads and 
spiking equity volatility – was only a fraction of the magnitude of 
what happened in 2007–2008. As Eric Rosenfeld, one of the LTCM 
partners, conceded in a 2009 presentation at the Sloan School of 
Management, if LTCM had somehow survived 1998, its collapse in 
2007–2008 would have been orders of magnitude more spectacular.
	 Not only did LTCM’s VaR models fail to prepare them for a mar-
ket event that in retrospect appears to occur about once per decade, 
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but LTCM’s VaR models encouraged a portfolio construction that 
rendered the firm uniquely vulnerable to that event. The case of 
LTCM is instructive because it reveals the three fundamental weak-
nesses inherent to the VaR methodology: (1) the false assumption 
of a normal distribution and therefore a unique vulnerability to the 
problems presented by fat tails; (2) a naïve equation of variance 
with “risk”; and (3) the problems inherent in using the past to pre-
dict the future.
	 The remainder of this chapter will discuss each of these three points.

NOT ALL DISTRIBUTIONS ARE NORMAL
Some data; non-linearity of returns
The first question that needs to be addressed is why, in practice, 
firms relying on VaR fail so frequently.
	 Some historical data helps to clarify the picture. To take the most 
familiar example, since its inception in 1896, the Dow Jones Indus-
trial Average (Figure 2.2) has had more than 29,000 trading days. 
Over this period, the index has demonstrated a daily standard de-
viation of 1.16%.

Figure 2.2  DJIA: 1896–2011

Source:  Data taken from Bloomberg; authors own composition
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Assuming a normal (Gaussian) distribution of returns, as the VaR 
model does, we should expect to find 98% of the daily moves of 
the index to fall within a range of 2.33-sigma (in this case a daily 
change of about +/− 2.69% around the mean daily return of 2.6bp). 
In other words, the theory predicts that the index should have ex-
hibited either a positive or negative move around the mean of a 
magnitude greater than 2.69% about 574 times – in theory. In the 
historical sample, the actual number was 918 (Table 2.1).
	 Again, assuming a normal distribution, over the 116-year history of 
the index we should expect to find about 80 observations beyond the 
3-sigma level. In the 116-year sample, we observe 480 such instances.
	 Assuming a normal distribution, over the same 116-year period 
we should expect to find about two observations beyond the 4-sig-
ma level. In the sample, we observe 202.
	 Assuming a normal distribution, we should expect to find a 
5-sigma event approximately once every 7,000 years, a fair amount 
longer than the 116-year history of the index. In the historical sam-
ple, we observe 87 such instances over the 116 years, a little under 
one per year.
	 Assuming a normal distribution, we should expect to find a 
6-sigma event once every 2 million years. In the sample, we observe 
48, a little under one every other year.
	 Assuming a normal distribution, we should expect to find a 
7-sigma event once every 1.5 billion years. In the sample, we ob-
serve 27, about once every four years.
	 Eight-sigma events should not occur even once over countless it-
erations of the history of the universe, yet in the sample we observe 
20, about once every six years.
	 By the time we reach beyond 10-sigma events, the normal dis-
tribution predicts such events to be so infinitesimally rare that the 
probabilities are no longer meaningful to us. And yet in practice 
we’ve experienced 10-sigma events nine times in the last 116 years, 
or a little less than once per decade.
	 At the very far ends of the tails, we have December 14, 1914, 
an 18-sigma event, and of course October 19, 1987, a 20-sigma 
event. For practical purposes such events fall outside the bounds 
of the model.
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Table 2.1  1-Day Events in the DJIA: 1896–2011

Sigma Expected Observed Error factor

2.33-sigma 575 918  1.6 

3-sigma 78 480  6.2 

4-sigma 1.83 202  110.4 

5-sigma 0.0166 87  5,240.9 

6-sigma 0.0000573 48  837,696.3 

7-sigma 7.43243E-08 27  363,272,718.9

8-sigma 0 20  infinite 

10-sigma 0 9  infinite

 
Source:  Data taken from Bloomberg; authors own composition

Thus, what the theory predicts and what actually happened repre-
sent wildly divergent sets of outcomes (Table 2.1). A normal distri-
bution has not been a safe assumption over the last 116 years of the 
Dow (Figures 2.3 and 2.4).

Source:  Data taken from Bloomberg; authors own composition

Figure 2.3  DJIA: 1896–2011
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	 This by itself isn’t necessarily damning. We need not observe a 
perfect normal distribution in the real world in order to make use of 
mathematical tools that assume a normal distribution. After all, the 
important differences we see between theory and reality occur only 
at the extremes of the distribution. These extremes – the tails – by 
definition represent rare events. As outlined above, as the events 
become more extreme, the error factors increase by orders of mag-
nitude into the trillions and beyond.
	 But, since these events are rare, the large error factors are equally 
rare. If instead we shift our focus towards the middle of the distribu-
tion, where the bulk of the observations lie, we see that about 80% 
of the Dow’s trading days fall within 1-sigma, against the theory’s 
prediction of 67%. Now we are talking about an error factor closer 
to 20%. Based on this, it might appear that VaR can still be useful for 
understanding the risks involved in more “normal” markets, even if 
it is less useful for predicting the frequency of extreme events.
	 This appearance is misleading. When we are talking about finan-
cial market risks, we cannot simply ignore the extreme events in 
favour of focusing on “normal” markets, because it is the extreme 
events that drive returns. The power of the tails is enormous, and 
their impact is not linear. This nonlinearity renders the results of tail 
analyses deeply counterintuitive.

Figure 2.4  DJIA: 1896–2011, left tail close-up

Source:  Data taken from Bloomberg; authors own composition
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Consider for a moment “upside” risk. If we were to remove the top 
100 trading days – fat tails every one of them – from the 29,000-day 
sample, we would also be removing 99.79% of the cumulative re-
turn of the index over the last 116 years. In other words, 0.34% of 
the trading days – those concentrated in the tail – are responsible 
for more than 99% of the index’s cumulative return (Table 2.2).
	 To make a completely fair comparison, however, we need to re-
place the top 100 observed trading days with the top 100 trading 
days we would expect from a normal distribution of a 29,000-day 
sample. When we make this swap, the cumulative return over the 
116 years drops by 93.5% compared with the actual historical re-
turn. The gulf between the normal distribution and the observed 
reality is so large that the difference between the two over just 100 
days changes the cumulative impact of a 29,000-day sample by a 
factor of 15! (Figure 2.5)

Figure 2.5  DJIA 1896–2011: observed versus imputed normal distribution

Source:  Data taken from Bloomberg; authors own composition
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Again, this impact is not linear. If we were to simply remove the 
top 10 trading days rather than the top 100, we would be removing 
67% of the cumulative return over the 116 years. In other words, 
0.034% of the trading days represent two-thirds of the cumulative 
116 year return (Table 2.2). If we replace these 10 days with the re-
turns predicted by the normal distribution, the cumulative return 
for the index drops by half.
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It is extremely easy to underestimate the power of the tails.

Table 2.2  DJIA: 1896–2011

Cumulative impact in the distribution

Top 10 days 66.87%

Days 11–100 32.92%

Remaining 29,000 days 0.21%

Thus, even if we can safely assume that VaR works well during the 
99% of the time that represents “normal” markets, this 99% of the time 
when VaR works accounts for less than 1% of the cumulative impact 
of the distribution. Because VaR is unable to account for what hap-
pens in the tails, it is unable to account for what actually drives risk 
and returns in financial markets. It is not a useful measure.
	 In terms of “downside” risk, the maths is equally compelling, 
but far more simple. A risk manager assuming a normal distribu-
tion into a VaR model could reasonably design a portfolio to with-
stand a 5-sigma event based on the expectation that the portfolio 
would make it through the next 7,000 years without a problem. 
Based on the actual record, we can expect such a portfolio to blow 
up approximately every 2.5 years.
	 This is a deeply flawed model.

Fat tails and the blackjack table
Where the normal distribution is useful is for understanding games 
involving coin flips, or certain casino games, where, at a minimum, 
(1) the rules of the game are stable, linear and well-defined and 
(2) each individual iteration of the game can be treated as discrete. 
Such conditions are a prerequisite for creating the random walk 
that will, over time, generate a normal distribution. Thus, we can 
make predictions about a casino’s ability to make money on the 
craps table or the likelihood of flipping heads 100 times in a row 
with an extremely high degree of confidence.
	 Unfortunately, neither of these conditions obtains in financial 
markets. It is unsurprising, then, that over any meaningful period 
the actual, real-world performance of the financial markets has 
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failed to conform to a normal distribution. This is because (1) in the 
financial markets the rules aren’t defined. In gambling terms, we 
don’t know in advance how many sides the dice have, and we don’t 
know if or how the number of sides on the dice is changing over 
time (Taleb 2001, 2007). And (2) the individual iterations are not 
discrete. In a casino game, rolling snake-eyes once does not increase 
the likelihood of rolling snake-eyes on the next roll. In the financial 
markets, it does (Mandelbrot and Hudson 2006)
	 Because of the power of the normal distribution, it can be tempting 
to treat markets as though they behave like a coin-flip game, or could 
be accurately described with the same equation with which we would 
describe particle diffusion. It makes the maths easier, and it also gives 
us a satisfying sense of understanding and mastery over an uncertain 
world. But this sense of understanding and mastery is an illusion.
	 The coin flip is an inapt metaphor. Financial markets are not a 
random walk. We know this because, while you could flip coins 
from now until the end of time, you will never come across a 10-sig-
ma coin-flip event. But, in the financial markets, 10-sigmas happen 
all the time. This is not possible if the random walk obtains.
	 More importantly, in the financial markets it is the 10-sigma events 
that represent the vast majority of the cumulative impact in the dis-
tribution. Though the events within a 2.33-sigma range are far more 
numerous, they are essentially irrelevant from a risk/return per-
spective. A risk methodology that handles the 2.33-sigma events but 
breaks down on 10-sigma events is not a risk methodology at all.

The stock market versus blackjack
In the real world, the practical, cumulative effect of non-defined 
rules and non-discrete iterations is to create wild spikes in variance, 
spikes that we would never see in a casino or while flipping coins, 
spikes of the kind that wiped out LTCM.
	 In the casino, because the rules are well defined, we can calculate 
a precise standard deviation and determine the odds on the craps 
table of, say, someone rolling snake-eyes 100 times in row. Because 
of the structure of the game, we can safely assume a perfectly nor-
mal distribution; there is no measurement error in a casino.
	 In the financial markets, on the other hand, we never know the 
true standard deviation for an asset class, nor can we safely assume 
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a normal distribution of returns. The standard deviation is a mov-
ing target; the distribution of returns is unstable. The best we can 
do is to use arbitrarily chosen historical sample sets to take a guess.
	 In many cases, LTCM’s models went back only three years. This 
gave them a portfolio-wide standard deviation of US$45 million 
per day. But LTCM could just have easily chosen different histori-
cal sample sets out of recent history that would have shown a daily 
standard deviation of US$200 million (Jorion 2000).
	 The difference between a US$45 million standard deviation and a 
US$200 million standard deviation is enormous. Using a US$45 mil-
lion standard deviation places the US$550 million losses on August 
21, 1998, and September 21, 1998, as 12.3-sigma events, something 
that should not occur even once over countless iterations of the his-
tory of the universe, much less twice in a few weeks. However, at a 
standard deviation of US$200 million, the losses on those two days 
are a 2.75-sigma event, something we could expect to occur every 
couple of years.
	 The lesson here is that measurement error compounds very, very 
quickly when using a normal distribution (Taleb 2007). Within the 
VaR model, the difference between an event that should never oc-
cur over hundreds of trillions of years versus an event that should 
occur four or five times a decade is small enough that simply choos-
ing different historical sample sets over the last twenty years can 
account for it entirely.

Blackjack versus cotton
We needn’t necessarily assume a perfect normal distribution into 
the VaR model. It is possible to assume a distribution with fatter 
tails, one that looks like something much closer to what we observe 
in reality. So-called “non-parametric” approaches to VaR are one 
attempt at such a solution. Any method that abandons the unsound 
assumption of the normal distribution represents an improvement 
over the standard approach. Unfortunately, such approaches none-
theless fail to resolve the deeper problems in the model.
	 The best way to think about the shape of a distribution is its kur-
tosis. A normal distribution, by definition, will exhibit a kurtosis of 
3. Broadly speaking, a distribution with thinner tails will exhibit a 
kurtosis lower than 3, with a minimum bound at 1. A distribution 
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with fatter tails will exhibit a kurtosis higher than 3.
	 The actual observed kurtosis of the Dow from 1896 through 2011 
is 23 (Table 2.3), which by itself is a strong statistical indication that 
assuming a normal distribution – that is, assuming a kurtosis of 3 – 
is a reckless act of portfolio management. One alternative approach 
is simply to plug a kurtosis of 23 into the VaR model and continue 
from there.
	 But simply changing the kurtosis value runs into its own set of 
problems. Changing the kurtosis falls back into the same trap of 
assuming that financial markets are analogous to blackjack or coin 
flips: even as it accepts that the process driving financial market 
returns is not identical to the process driving coin flips or casino 
games, it nonetheless assumes that there is a single, stable process 
for generating the returns series.
	 This assumption is false. The observed kurtosis, like all the other 
VaR inputs, is not stable. There is no single return-driving process 
with a kurtosis of 23 (Table 2.4). There is no identifiable process at all.

Table 2.3  DJIA: 1896–2011

Kurtosis by decade

1890s 9.7

1900s 7.4

1910s 43.7

1920s 19.0

1930s 9.5

1940s 7.9

1950s 8.6

1960s 9.1

1970s 4.6

1980s 70.9

1990s 8.0

2000s 11.6

1896–2011 23.0

Normal distribution 3.0
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Looking at Table 2.3, we might be tempted to assume away the 70.9 
figure from the 1980s, as this is heavily influenced by the single-day 
event of the crash on October 19, 1987. But, when you consider that 
the purpose of a kurtosis is to measure the statistical impact of rare 
events, this simplifying approach seems less logically sound.
	 The important point to take away from the kurtosis table is that 
any choice you make, whether choosing the 23.0 for the entire sam-
ple, or choosing any of the individual decades, or any combination 
thereof, is entirely arbitrary. There can be nothing objective about 
the choice. Like all inputs to VaR, it is a wild guess dressed up as 
mathematical rigor.
	 Though the data presented here is specific to the US stock mar-
ket, it is important to remember that this market is not unique. As 
Mandelbrot has shown, these same dynamics of unstable, non-nor-
mal distributions apply equally to other markets, even those as far 
afield as the markets for physical commodities such as cotton (Man-
delbrot 1963). No matter where you look in the financial markets, 
you will be hard-pressed to find a normal distribution of returns, or 
even a stable distribution of any kind. This is why stable distribu-
tions are the wrong way to think about risk in financial markets.

The global financial crisis
The global financial crisis (GFC) of 2007–2008 highlighted some of 
the major problems with the VaR model. The most obvious point 
that came out of the crisis is that VaR is a procyclical measure; that 
is, when times were good, the placid markets generated low VaR 
figures, which encouraged firms to leverage up their risk. For a 
time, this increasing leverage fuelled market prices, sustaining the 
positive cycle. As the bull cycle progressed, the VaR figures kept 
dropping, giving participants the false impression that the risk in 
the system was decreasing, when in fact the opposite was the case. 
The reality was that the increasing leverage gradually increased the 
fragility of the overall system. As a result, when the market broke 
in late 2007, everything went haywire at once.
	 Firms typically use a one-, three- or five-year trailing VaR. Unfor-
tunately, the period between 2003 and 2007 captured only a single, 
sustained bull market in nearly every asset class. There was noth-
ing in the 2003–2007 sample that remotely suggested that the events 
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of 2008 were even possible, much less likely to happen in the com-
ing year. Thus, those relying on this period in their VaR models 
were unprepared for the events of 2008.
	 The Dow’s standard deviation for the period from 2003 to 2007 
was about 80bp. For 2008, it was 239bp. The tripling in the standard 
deviation meant that a 6-sigma event for the 2003–2007 period, an 
event so extreme that the normal distribution predicts it should oc-
cur only once every 2 million years, in 2008 suddenly became a 
2-sigma event, something the normal distribution predicts should 
occur every 22 days. Obviously, firms relying on trailing VaR fig-
ures to manage their risk were caught off guard by this change.
	 An interesting feature of the GFC is that, even if a risk manager 
had magically known 2008’s mean return and standard deviation 
in advance and plugged those figures into a VaR model, the daily 
returns from 2008 would not have been normally distributed. In-
deed, this clairvoyant version of the VaR model still would have 
shown two 5-sigma events in 2008, events the normal distribu-
tion predicts should occur once every 7,000 years, not twice in a 
single year.
	 This phenomenon holds for virtually any period of sufficient 
length in the history of the Dow. In other words, VaR doesn’t fail 
because of our inability to select the correct historical sample. It is 
true that VaR’s failures in 2008 were particularly egregious due to 
the widespread sampling of the uniquely unrepresentative period 
from 2003 to 2007. But it wouldn’t have made a difference if the 
VaR modellers had plugged in the Great Depression as the histori-
cal sample (or even if the modellers had been able to predict the 
future): VaR still would have failed to prepare its users for what 
happened in 2008.
	 The failure is not in the application of the model but in its very 
concept. The distributions cannot be accurately modelled because 
they aren’t fixed over time. Financial markets are not driven by a 
single stochastic process. Instead, the stochastic process is constantly 
changing in ways that are impossible to predict or model in advance. 
Risk methodologies predicated on predicting and modelling what is 
fundamentally unpredictable and impossible to model are the wrong 
approach to the problem. Our thinking about the nature of financial 
risk needs to be more flexible and nuanced than that.
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VARIANCE IS NOT RISK
Two traders
Imagine a pair of options traders, a BUYER and a SELLER. The 
SELLER has sold the BUYER a series of options such that SELLER 
and BUYER hold identical, but inverse, portfolios. It is a zero-sum 
game: as the portfolios are marked to market, every dollar that one 
trader makes, the other trader loses, and vice versa.
	 Now imagine a risk manager at a large institutional investor, who 
is weighing in on the decision of whether to invest the institution’s 
money with the BUYER or the SELLER. Naturally, the risk manager 
runs a VaR analysis on the two traders, assuming a normal distribu-
tion. The two traders hold inverse but otherwise identical positions. 
Because VaR incorporates only variance and ignores directionality, 
the VaR analysis of the two portfolios will produce the exact same 
results, no matter when the test is run. For VaR purposes, these port-
folios are not the inverse of one another, but are exactly the same.
	 But from any commonsense perspective of risk, these portfolios 
are nothing alike. Because of the nature of options contracts, the 
BUYER’s potential losses are capped to the premiums paid, but 
the BUYER’s potential gains are infinite. The SELLER, on the other 
hand, has potential gains that are capped to the premiums received, 
but faces potentially infinite losses. In other words, the BUYER is 
structurally immune to blow-up risk, while the SELLER is perpetu-
ally exposed to blow-up risk. And yet any variance analysis will 
treat these two portfolios exactly the same.
	 When an extreme “tail” event occurs, the VaR figure for both 
strategies will rise, to reflect the increase in what VaR calls “risk”, 
but is merely an increase in variance. Since VaR ignores directional-
ity, it ignores the fact that “tail” events can only help the BUYER, 
while they can only hurt the SELLER. In this case a VaR analysis will 
produce the paradoxical result that the BUYER’s and the SELLER’s 
“risk” has increased in exactly the same proportion because of a 
variance event where the only possible outcome is that the BUYER 
makes money and the SELLER loses it.
	 For the BUYER’s strategy, high variance means low risk and low 
variance means high risk. For the SELLER’s strategy, high vari-
ance means high risk and low variance low risk. Obviously there 
is something problematic in using the same variance-based method 
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– one that assumes low variance is equivalent to low risk – to mea-
sure the risk in both. (Table 2.4)

Table 2.4  Two traders

High variance Low variance

Option BUYER Low risk High risk

Option SELLER High risk Low risk

The fundamental assumption behind VaR is that low variance is 
equivalent to low risk. But what the example of the options BUYER 
proves is that low variance does not mean low risk for all assets. In 
other words, variance does not equate to risk.
	 Another way of stating this is that options contracts do not con-
form to the normal distribution. If we stretch the time frame to in-
corporate the life of the contracts, we will see that option BUYERs 
have no left tail; their return distributions lose small amounts of 
money nearly all the time, but every once in a while make enor-
mous amounts of money (Figure 2.6). Conversely, option SELL-
ERs have no right tail. They make small amounts of money nearly 
all the time, but every once in a while lose enormous amounts of 
money (Figure 2.7). The observed distribution over the life of the 
contracts looks nothing like the normal distribution (Figure 2.8).
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Figure 2.6  Option BUYER
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Figure 2.7  Option SELLER
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Compare the BUYER’s and the SELLER’s distributions (Figures 10 
and 11) against the normal distribution (Figure 2.8). Is a normal dis-
tribution a fair assumption for these contracts?

Figure 2.8  Normal distribution
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The SELLER can still make money, but VaR still doesn’t measure risk 
This isn’t to say that the BUYER will always outperform the SELLER. 
That will depend upon the pricing of the options and the frequency 
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of the extreme events that trigger the options to pay off. It is easy to 
imagine scenarios where, like a profitable insurance company, the 
SELLER prices options such that the profits made in "normal" years 
more than offset the losses taken when extreme events occur. But it is 
also easy to imagine scenarios where they do not.
	 The point isn’t that strategies like the BUYER’s that are immune 
to blow-up risk are always better than strategies like the SELLER’s, 
which are prone to it. Rather, the point is that a measure like VaR 
can’t tell you anything about their relative merits. This is for the 
simple reason that it can’t distinguish between the two.
	 The relevant question is whether or not the SELLER is being 
adequately compensated for taking on the blow-up risk to which 
the BUYER is immune. But because VaR is blind to the structural 
differences between these two strategies, it has nothing to say on 
the relevant question. Indeed, it will simply say the risk in the two 
portfolios is always the same, no matter how much the BUYER has 
over- or underpaid the SELLER for the latter’s options.
	 Since VaR can see only pure variance, which it considers bad, 
and not variance within the context of directionality, a risk man-
ager employing VaR-based risk budgeting will systematically 
overweight strategies for which variance is a bad thing relative 
to those strategies for which variance is a good thing (for more 
on this, see the subsection titled “The fallacy of ‘risk-adjusted’ re-
turns” below). In other words, by treating these inverse strategies 
as the same from a risk perspective, VaR has the pernicious effect 
of misleading its users into ignoring the possibilities of blow-up 
risk. This was the fundamental mistake that LTCM made by rely-
ing on the VaR methodology.
	 In short, what variance-based risk metrics consider to be low-
risk strategies are merely low-variance strategies – that is, strategies 
that will perform well if the world proves to be not very risky. This 
is a dangerous bias in a risk metric.

Credit default swaps
The market for credit default swaps (CDSs) demonstrates the same 
structural asymmetries that we see in the options market. We can 
repeat the BUYER and SELLER example from above, using CDSs 
in place of options, and the result is the same: variance and risk 
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are not the same thing (Figures 13 and 14). Strategies such as buy-
ing options or CDS contracts will always profit from high variance. 
Risk managers who equate high variance with high risk will un-
derweight these strategies relative to strategies that profit from low 
variance based on a flawed understanding of what “risk” is.

Figure 2.9  Credit default swap BUYER
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Figure 2.10  Credit default swap SELLER
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The bond market
The phenomenon where variance does not equal risk isn’t limited 
to the relatively small world of options or credit market derivatives. 
The bond market itself is subject to it.
	 Imagine a one-year bond trading at par with a coupon of 3%. 
The BUYER of this bond is in a similar position to the SELLER of 
options or CDS contracts. The BUYER is facing a situation where 
his potential gain is capped – the coupon is fixed, and, for struc-
tural reasons, this bond is not going to trade beyond a price of 103 
– while he is exposed to the loss of his entire investment of 100.
	 Thus, the bond BUYER, like the options or credit default swap 
SELLER, has asymmetrical exposure to extreme “tail” events (Fig-
ure 2.11). In the best possible case, an extreme event can only in-
crease the price of the investment of 100 to 103. In the worst pos-
sible case, an extreme event can reduce the value of the investment 
to zero. For practical purposes, an increase in variance cannot help 
the bond BUYER, it can only hurt the bond BUYER.
	 A long bet on bonds, like a short bet on options or CDS contracts, 
is a bet that variance will remain low in the future. This is not the 
same thing as a low-risk bet. Should the trader prove wrong about 
future variance, with any of these positions the potential losses are 
many multiples of the potential gains if the trader is right.
	 The inverse is true for a short SELLER of bonds or a BUYER of 
options or credit default swaps: the potential gains are many mul-
tiples of the potential losses. Since with these strategies the maxi-
mum potential loss is predefined and small relative to the principal 
invested, there is no possibility of blow-up risk (Figure 2.11).
	 Again, this is not to say that SELLERs of bonds and BUYERs of 
CDSs will always outperform the counterparties taking the other 
side of their trades. That will depend on the pricing: are their coun-
terparties being adequately compensated for accepting the blow-
up risk? But it is to say that there is enormous difference in the risk 
profiles between the two strategies. A VaR analysis will obscure this 
enormous difference, as the inverse portfolios will exhibit the exact 
same variance, even as they clearly have asymmetric return rela-
tionships to changes in variance and consequently bear very differ-
ent levels of blow-up risk.
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Figure 2.11  Bond BUYER
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Figure 2.12  Bond short SELLER
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Equities
Like the bond, CDS and options markets, the equity market is also 
subject to asymmetrical outcomes. As every short SELLER of equi-
ties is aware, the potential gain on a short sale is capped at 100% 
of the stock borrowed. The potential losses, however, are infinite 
(Figure 2.14). Likewise, the inverse is true for the equity BUYER: 
the losses are capped at 100% of the principal invested, while it is 
not at all uncommon to see individual equities go up 200%, 300%, 
400% or more over a given period of time (Figure 2.13).
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	 In this sense, broadly speaking the equity BUYER, like the options or 
CDS BUYER, is long variance. Therefore, a tool that equates higher vari-
ance with higher risk will prove misleading for equities as an asset class, 
just as it does for options or CDS contracts.
	 However, not all individual equities behave in the same way. Portfo-
lios invested in highly leveraged business models, such as banks and in-
surance companies, will have more negative exposure to variance than 
the stock market as a whole. Conversely, portfolios invested in debt-free 
speculative companies gain positive exposure to extreme events.

Figure 2.13  Equity BUYER
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Figure 2.14  Equity short SELLER
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The fallacy of “risk-adjusted” returns
LTCM is a textbook case of how VaR analysis leaves the investor 
blind to the difference in risk profiles between the options BUYER 
and the options SELLER.
	 LTCM made much of the diversification of its portfolio, which it 
broke out across asset classes and geographies and countless other 
categories of diversification. But LTCM was sorely lacking in one 
form of diversification: in almost every single position in the port-
folio, LTCM had taken on the role of the options SELLER, the CDS 
SELLER or the bond BUYER. LTCM’s bets all fitted a profile where-
by they would consistently make a small amount of money in nor-
mal markets, but would lose a large amount of money if something 
ever went wrong. In other words, LTCM had only negative expo-
sure to the rare event.
	 The reason its portfolio was built this way was that this is what 
its models told it would produce an optimal “risk-adjusted return.” 
Imagine LTCM’s portfolio taken against an inverse of LTCM’s port-
folio. In any given year, the odds are very high that LTCM’s portfo-
lio will exhibit superior “risk-adjusted” returns relative to inverse-
LTCM. This is because most of the time normal markets obtain. And, 
as the example of LTCM showed, in normal markets – four years out 
of five, or nine years out of ten – LTCM will generate a 30% return 
at low volatility, while inverse-LTCM will produce a negative 30% 
return at the same volatility. To someone seeking to maximise “risk-
adjusted” returns, it is obvious which portfolio they would choose.
	 One of the peculiarities of the “risk-adjusted” model is that, 
even if inverse-LTCM vastly outperforms LTCM over a full cycle, 
inverse-LTCM will never show good “risk-adjusted” returns. If the 
sample includes only normal markets, then it will show negative 
returns at low volatility. Even if the sample includes an extreme 
event, the portfolio will show high returns, but with extraordinarily 
high volatility.
	 Inverse-LTCM, like the options or CDS BUYER, will never per-
form well on a “risk-adjusted” basis, because each of these is a strat-
egy that is designed to make money from high variance (“risk”). A 
risk methodology that rewards the minimisation of variance will 
always underweight such strategies. Conversely, such a methodol-
ogy will always overweight LTCM-like strategies.
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	 The variance-based concept of “risk-adjusted” returns claims 
that inverse-LTCM is somehow riskier than LTCM. But it is plainly 
not. Indeed, inverse-LTCM cannot blow up, and over a full cycle 
that included both 1998 and 2007–2008, it would have made an 
enormous amount of money. Conversely, LTCM is a ticking time-
bomb, no matter how good its “risk-adjusted” returns look before 
the extreme event occurs.
	 The problem with the model is that variance is not the same 
thing as risk. Investors who fall into the trap of equating variance 
with risk will consistently find themselves building LTCM-like 
portfolios that are prone to blowing up. Equally problematic, us-
ers of this model will dismiss inverse-LTCM-like portfolios that are 
fundamentally robust to extreme events.
	 These tail-asymmetries are particularly important in light of the 
arguments made above, namely that extreme tail events are far more 
frequent, and carry far more cumulative weight than is predicted 
by the normal distribution or is commonly understood. Thus, a risk 
methodology that encourages left-tail exposure while discourag-
ing right-tail exposure produces portfolios (and a financial system 
at large) with massive negative exposure to the inevitable extreme 
event. We’ve witnessed the fallout of this exact phenomenon twice 
in recent memory with LTCM in 1998 and the financial system at 
large in 2008.
	 VaR and “risk-adjusted” returns are a perverse way of thinking 
about risk. A risk-management system that encourages blow-up-
prone portfolio construction is not a risk-management system at all.

THERE ARE NO CRYSTAL BALLS
Using the past to predict the future
There are variants of VaR that do not assume a normal distribution, 
instead strictly relying on past return series to predict the future 
distribution. This is one way around some of the many problems 
inherent in relying on the normal distribution. Unfortunately, the 
problem with this approach is the same as with the approach that 
assumes a normal distribution, but worse: its value is even more 
contingent on choosing the “right” historical sample set.
	 Picking the historical sample set that will most closely match future 
returns is no easier than predicting the future itself. The idea that a 
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risk manager can figure out the “right” sample set simply by thinking 
harder is an illusion. Financial markets do not operate like casinos; the 
mean, the standard deviation, the correlations, and the kurtosis are 
not fixed. There is no way to know the correct sample set.
	 It isn’t only that there is no way to know the correct historical 
sample set. In addition, there is the much more troublesome prob-
lem that there is no way to account for events that haven’t hap-
pened yet. There are instances where financial history appears to 
repeat. And there are instances where it does not. Those building 
portfolios to be robust to past crises without regard for the possi-
bility that future crises might be different are deluding themselves 
about the risks they taking.
	 In 2001, Nassim Taleb offered the following example to illustrate 
the problem of naïvely interpreting past data in order to predict the 
future: “I have just completed a thorough statistical examination of 
the life of President Bush. For 55 years, close to 16,000 observations, 
he did not die once. I can hence pronounce him as immortal, with a 
high degree of statistical significance” (Taleb 2001).
	 New, unprecedented things happen all the time in financial mar-
kets. The collapse of the subprime market in 2007–2008 had never 
happened before, and neither had the convulsions in the market for 
CDS. There was no way to prepare for these crises based on histori-
cal modelling.
	 Another problem with historical modelling is survivorship bias. 
We model what we have data for. When we model the risk of the 
equity market, we model the Dow or the FTSE or some other index 
that has a long-running, high-quality data series. But this ignores 
the far more numerous indexes that have failed to leave behind 
high-quality data.
	 As Taleb has pointed out, an investor in 1900 looking to invest in 
three of the most promising “emerging” markets would have rea-
sonably split the investment between the United States, Argentina 
and Russia. Investors in the United States did very well. Investors 
in Argentina and Russia did not. After 1900, the markets in both 
countries were subsequently nationalised; investors came away 
with nothing. When we use historical models to determine the risk 
in the US equity market, we ignore the possibility that it might go 
to zero for the simple reason that such a thing has never happened 
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before – at least not in the United States. But as the examples of 
Argentina and Russia show, there is no reason to believe such an 
outcome is impossible (Taleb 2001).
	 Investors in 1900 trying to understand the relative risks of in-
vesting in the United States, Argentina or Russia would have done 
themselves an enormous disservice by equating the risk of invest-
ing in each country with its variance in returns from 1890 to 1900. 
To do so would have been to grossly, almost comically, misunder-
stand the nature of the risks being taken.
	 The same principle applies today. For 150 years, the United States 
has been the safest, most lucrative country in the world in which to 
invest. But past performance is no guarantee of future results. The 
United States is currently running the largest deficits and is shoul-
dering the largest cumulative debt burden in its history. It is also si-
multaneously engaged in one of the most aggressive monetary ex-
periments ever attempted. How these twin phenomena will shake 
out is impossible to predict.
	 The underlying landscape is changing, as are the risks. To blithe-
ly assume that the United States’ future will simply continue the 
trajectory of its past is reckless. Looking at variance in returns from 
2000 to 2010 is no more an accurate gauge of future risk than it was 
for the period from 1890 to 1900. The true nature of risk is more 
complex than simple measures of historical variance.

Which past? Whose experience?
After the LTCM debacle, Victor Haghani, one of the LTCM part-
ners, was quoted as saying, “What we did is rely on experience, 
and all science is based on experience. And if you’re not willing 
to draw any conclusions from experience, you might as well sit on 
your hands and do nothing” (Lewis 1999).
	 The problem with Haghani’s claim is that the lessons of experi-
ence change drastically depending on which set of experience you 
rely. You can interpret Haghani’s claim to mean that using historical 
measures like VaR, as LTCM did, is the only reasonable option for 
constructing a portfolio. Alternatively, you could study a different 
set of experience by counting the number of VaR-using firms that 
have blown up over the last 15 years. Such a study would lead to 
the opposite conclusion: that VaR is not a very effective system of 
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risk management.
	 Studying the past is imperative in the practice of risk manage-
ment, but the naïve, uncritical use of past data creates more problems 
than it solves. These problems are compounded by an approach that 
arbitrarily imposes a theoretical tool, such as the normal distribution, 
that has empirically failed to describe actual historical returns.
	 A major theme of past financial history, including LTCM and 
the financial crisis of 2007–2008, is that financial markets are tail-
driven. If we are interested in generating returns, or in protecting 
ourselves from losses, as all investors should be, then we should 
be spending a hugely disproportionate amount of our time think-
ing about tail events, as these are what drive cumulative returns. 
A risk-management system that fails to adequately account for tail 
events is not a risk-management system at all. Such systems are 
deeply misleading about the real nature risk, their seeming preci-
sion leading to dangerous overconfidence (Figure 2.15).

Figure 2.15  The overconfidence index: leverage ratios, 1999–2007

Source:  Data taken from Bloomberg; authors own composition
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The epistemology of risk management
Ultimately, VaR’s most pernicious characteristic is to make what is 
fundamentally unknowable appear to be precisely quantifiable. It 
has repeatedly failed to protect its users in the past, and will con-
tinue to do so in the future, because its basic premises are faulty. To 
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summarise the argument so far: (1) fat tails are the heart of what 
drives risk and returns, not something that can be ignored; (2) vari-
ance does not equate to risk; and (3) the assumption that the future 
will look like the past is untenable.
	 However, these criticisms of VaR should not be taken as a rec-
ommendation for throwing our hands up in the air and taking a 
know-nothing approach to risk management. Rather, they should 
be taken as an admonition that VaR is too superficial a measure of 
risk to constitute an adequate risk-management process. Risk man-
agement is much harder than simply doing a VaR calculation.
	 An honest risk-management process must draw a distinction 
between the things risk managers know and those things they do 
not know. Risk managers do not know the true, forward-looking 
standard deviation of their portfolios. They do not know the fre-
quency or severity of future tail events. They do not know future 
correlations between assets. Centring a risk-management process 
on pretending to know things that the risk manager fundamentally 
does not know will prove to be a fruitless exercise.
	 A more promising approach is to focus on what risk managers 
know instead of on what they do not. Risk managers know the struc-
tural tail profile of each of their assets: is the asset exposed to left-tail 
risk, right-tail risk, neither or both? Risk managers also know a fair 
amount of asset-specific information that weighs heavily on the risk 
of individual stocks and bonds (and the derivatives derived from 
them): market price versus liquidation value, financial leverage, etc. 
These are the analytics on which risk managers should be focusing. 
Risk managers must also place front and centre many issues that VaR 
ignores, including liquidity, regulatory and political risk.
	 Understanding risk this way is not easy. But there is no reason 
why risk management should be easy. Indeed, the number of finan-
cial firms that have blown up in just the past few decades proves 
that it is extraordinarily hard. Investors and risk managers are far 
better off embracing and engaging with these difficulties, rather 
than pretending they can be washed over with a single VaR met-
ric. There is no one-size-fits-all solution to the problem. Each asset 
is unique and we cannot simply assume that past correlations be-
tween asset classes will hold in the future.
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CONCLUSION: HOW TO PROTECT A PORTFOLIO
A sound risk-management process will (1) not rely on the false as-
sumption of a normal distribution, nor will it rely on the false as-
sumption of a stable distribution of any kind; (2) it will not equate 
variance with “risk”; and (3) it will not attempt to use the past to 
predict the future.
	 Most importantly, a sound risk-management process will place 
special emphasis on tail risks. Fat tails are the thing most likely to 
generate returns, as well as the thing most likely to blow up a port-
folio. They cannot be ignored.
	 VaR figures approximate the risk of a portfolio during “normal 
markets.” But since “normal” markets constitute a tiny fraction of 
the observed risks, both positive and negative, this is not a useful 
measure. Indeed, VaR’s failure to account for tail exposures can be 
extremely misleading. Taken to the extreme, as in the case of LTCM, 
the use of the VaR methodology and the closely related metric of 
“risk-adjusted” returns leads to a portfolio that is “optimised” for 
“normal” markets, but that is especially vulnerable to tail events. 
Such portfolios are blow-ups waiting to happen.
	 The problems of VaR run deep. It isn’t only the assumption of a 
normal distribution that causes trouble. More fundamentally, it is 
the assumption that financial markets are akin to a casino game, or 
a coin-toss game. It is the assumption that there is a single stochas-
tic process driving the markets, and that this process can be under-
stood, modelled and used to make predictions about the future.
	 This assumption is false.
	 The way forward in financial risk management is a less quantita-
tive approach, an approach that treats the markets as a qualitative 
problem that must be studied and analysed to be understood, not as 
a second-rate math problem to be definitively solved (Taleb 2007).
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